Fcr1p Inhibits Development of Fluconazole Resistance in Candida albicans by Abolishing CDRI Induction

Hui Shen, a Mao-Mao An, b De Jun Wang, a Zheng Xu, a Jun-Dong Zhang, a Ping-Hui Gao, a Ying-Ying Cao, a Yong-Bing Cao,*,a and Yuan-Ying Jiang*,a

*Department of Pharmacology, School of Pharmacy, Second Military Medical University; 325 Guo He Road, Shanghai 200433, P.R. China; and b Department of Clinical Pharmacology, Chinese People’s Liberation Army General Hospital; 28 Fu Xing Road, Beijing 100853, P.R. China. Received June 19, 2006; accepted September 16, 2006

Overexpression of Candida drug resistance 1 (CDRI) gene in Candida albicans (C. albicans), an efflux pump, is one of the major mechanisms contributing to drug resistance. C. albicans for fluconazole resistance 1 protein (Fcr1p) is a member of the family of zinc cluster proteins homologous to Pdr1p and Pdr3p (pleiotropic drug resistance protein) mediating azole resistance in Saccharomyces cerevisiae (S. cerevisiae) by regulating the expression of pleiotropic drug resistance 5 (PDR5) homologous to C. albicans CDRI. A previous study has shown that for fluconazole resistance 1 (FCRI) could also confer azole resistance in S. cerevisiae pdr1 pdr3 mutant by regulating PDR5. Therefore, we investigated the role of FCR1 in the development of C. albicans azole resistance in vitro and in vivo. Our results showed that Fcr1p inhibited fluconazole (FLC) resistance development in C. albicans through abolishing the induction of CDRI expression by FLC, and in contrast FLC resistance development was accelerated resulting from the deletion of FCR1.

Key words Candida albicans; FCR1; CDRI; drug resistance

Candida albicans (C. albicans), the major opportunistic fungal pathogen in humans, causes diseases varying from superficial mucosal complaints to life-threatening systemic disorders.1—3 Coincident with the increased use of antifungal drugs, the incidences of drug resistance have also increased.4—6 In recent years, the development of multidrug resistance in clinical isolates has challenged effective treatment of the infections. Specifically, the extensive and repetitive use of antifungal azole derivatives such as fluconazole (FLC) has allowed C. albicans to utilize many mechanisms of resistance in order to ensure its survival.7,8 This situation highlights the need for elucidating the mechanism of drug resistance in C. albicans to develop new antifungal agents.

Overexpression of efflux pumps, either ATP-binding cassette (ABC) or major facilitator superfamily (MFS) transporters, has been shown to be one of the major mechanisms of drug resistance in clinical isolates because if causes active extrusion of the drug out of the cell.9—13 The Candida drug resistance 1 (CDRI) gene, which encodes an ABC efflux pump, is identified by complementation of the pleiotropic drug resistance 5 (pdr5) mutant, which is hypersensitive to cycloheximide, chloramphenicol, andazole drugs, in Saccharomyces cerevisiae (S. cerevisiae).12 C. albicans cdr1 mutant resulted in increasing susceptibilities toazole drugs,13 which is consistent with the observation that overexpression of CDRI contributes to the drug resistance ofclinical isolates of C. albicans.6,14 Furthermore, the existence of trans-regulatory factors of CDRI has also been suggested.15 However, the molecular mechanism and the gene network regulating the expression of CDRI and drug resistance are poorly understood.

C. albicans Fcr1p (for fluconazole resistance 1 protein), a member of the family of zinc cluster proteins, is characterized by a highly conserved Zn(II)Cys6 zinc finger motif within the N-terminal DNA binding domain (DBD).16 Well known Pdr1p and Pdr3p (pleiotropic drug resistance protein) zinc cluster proteins regulate the expression of several multidrug ABC transporter genes including PDR3, SNQ2, and YOR1, causing azole resistance in S. cerevisiae.13—28 C. albicans Fcr1p displays significant sequence homology with S. cerevisiae Pdr1p and Pdr3p, and it could confer azole resistance in S. cerevisiae pdr1 pdr3 mutant by regulating PDR5.16 We hypothesized that Fcr1p maybe involved in the development of C. albicans azole resistance as well as Pdr1p and Pdr3p in S. cerevisiae.

In the present study we investigated the role of Fcr1p in the development of C. albicans azole resistance and possible mechanisms in vitro and in vivo. The results showed that Fcr1p inhibited development of fluconazole resistance in C. albicans through abolishing the induction of CDRI expression by FLC, and in contrast FLC resistance development was accelerated resulting from the deletion of FCR1.

MATERIALS AND METHODS

Strains and Media C. albicans strain CAI4 (FCR1/FCRI) and C. albicans strain FM7 (fcr1Δ:hisG/fcr1Δ:hisG, obtained by deleting both copies of the FCR1 gene in CA14) were kindly provided by Dr. William A. Fonzi (Department of Microbiology and Immunology, Georgetown University, Washington, DC) and Dr. Martine Raymond (Institut de Recherches Cliniques de Montréal, Québec, Canada)19 (Table 1).

The strains were cultivated at 30°C under constant shaking (200 rpm) in a liquid complete medium YPD consisting of 1% (w/v) yeast extract, 2% (w/v) peptone, and 2% (w/v) dextrose. For agar plates, 2% (w/v) Bacto agar (Difco, BD Biosciences) was added to the medium. Uridine (20 μg/ml) was added to ensure the growth of CA14 and FM7.

Construction of C. albicans FCR1 Expression Plasmids

The YPB-ADH/FCR1 plasmid was constructed by inserting a BglII–XhoI DNA fragment containing wild-type FCR1 into

* To whom correspondence should be addressed. e-mail: maoan168@yahoo.com.cn

© 2007 Pharmaceutical Society of Japan
the YPB-ADHpt vector (a gift from Dr. Martine Raymond), which carries the \textit{C. albicans} \textit{ADH1} promoter and terminator regions, a \textit{C. albicans} autonomously replicating sequence, and the \textit{CaURA3} marker. The plasmid YPB-ADHpt and the mutant plasmid YPB-ADH/FCR1 were used to transform FM7 cells by using the Yeast Transformation System 2 from Clontech (Palo Alto, CA, U.S.A.), while the plasmid YPB-ADHpt transformed CA14 was used as control (Table 1). The positive colonies were then identified.

\textbf{Quantitative Real-Time RT-PCR} Total RNA was isolated from exponentially growing cultures with Trizol reagent (Invitrogen). First-strand cDNAs were synthesized from exponentially growing cultures with Trizol and the samples were measured at an excitation wavelength of 600 nm (the cultures during the subsequent 48 h). Assays were performed in duplicate.

\textbf{Growth Curve Study} The effect of FLC exposure in relation to time and concentration on the strains was determined in YPD liquid medium. FLC was added to the cultures, the final concentration of which was 20 μg/ml. The growth was monitored by measuring the optical density (600 nm) of the cultures during the subsequent 48 h.

\textbf{Rhodamine 6G Efflux} Active efflux of rhodamine 6G (R6G) was determined by a previously described protocol.30 Approximately 107 cells from an overnight culture were incubated in 200 ml of YPD medium and grown for 5 h at 30 °C. The cells were pelleted and washed three times with phosphate-buffered saline (PBS) buffer without glucose. The cells were resuspended in PBS buffer to the concentration of 108 cells/ml, shaken at 30 °C for 1 h to exhaust the energy, and then R6G was added to the final concentration of 10 μM and incubated for 2 h at 30 °C. The cells were then washed three times with PBS before addition of glucose (final concentration, 2 mM) to initiate R6G efflux. At specific intervals after the addition of glucose, the cells were centrifuged and 100 μl supernatants were added into to 96-well plates (BMG Labtechnologies). Rhodamine 6G fluorescence densities of the samples were measured at an excitation wavelength of 515 nm and an emission wavelength of 555 nm.

\textbf{Animal Studies} BALB/c female mice weighing 18 to 20 g (Center of Experimental Animals, Second Military Medical University, Shanghai, China) were used in the study. All animals received humane care in compliance with the institutional animal care guidelines, and were approved by the Local Institutional Committee.

The susceptibility to FLC of strains CAI4[YPB-ADH], FM7[YPB-ADH], and FM7[YPB-ADH/FCR1] grown in FLC (20 μg/ml) for 25 d were tested in a murine model of disseminated candidiasis by inoculating 1×106 cells per mouse in the lateral tail vein. FLC therapy with the dose of 5 mg/kg by lateral tail vein injection was initiated at 24 h postchallenge. Control mice were given the same volume of sterile saline. After 5 d treatment, the mice were sacrificed and the kidneys were excised by a sterile technique, weighed, and homogenized in 2.0 ml of sterile 0.9% saline. The homogenates were diluted by 10-fold dilution in sterile saline, and 0.1 ml of each dilution and the undiluted homogenate were cultured in triplicate on sabouraud dextrose agars (SDA). Culture plates were incubated for 48 h at 30 °C and the number of colony-forming unit (CFU) per gram of tissue was calculated.

\subsection*{RESULTS}

\textbf{FCR1 Expression in FCR1 Overexpression, fcr1 Mutant and Their Parent Strain} To confirm FCR1 expression in FM7[YPB-ADH] which was \textit{fcr1} mutant and FM7[YPB-ADH/FCR1] which was \textit{FCR1} overexpression, real-time RT-PCR was applied in this study. There was no \textit{FCR1} expression detected in FM7[YPB-ADH], while much higher expression was detected in FM7[YPB-ADH/FCR1] than their parent strain CAI4[YPB-ADH] (Fig. 1).
Downregulation of FCR1 Expression in C. albicans Resistant to FLC

In this study we used real-time RT-PCR to analyze FCR1 expression in CAI4 after 25 d of FLC exposure, and CAI4 cultured for 25 d without FLC exposure was used as control. The results demonstrated the expression of FCR1 was decreased by treating the cells with FLC, suggesting it may be involved in the development of FLC resistance in C. albicans (Fig. 2).

FCR1 Inhibited the Development of FLC Resistance in C. albicans

The susceptibilities of C. albicans cells to FLC were confirmed by determining the lowest drug concentrations that gave >80% inhibition (MIC80). To analyze the development of FLC resistance, C. albicans were cultured in medium containing FLC at a concentration of 20 mg/ml. All strains developed variable degrees of reduced susceptibilities to FLC after 35 d of drug exposure: the MICs for CAI4[YPB-ADH], FM7[YPB-ADH], and FM7[YPB-ADH/FCR1] rose from 0.5, 1, 0.25 to 16, >64, 4, respectively; an equivalent level of reduced susceptibilities took longer to develop for CAI4[YPB-ADH] than FM7[YPB-ADH], while FM7[YPB-ADH/FCR1] took longer than CAI4[YPB-ADH]; Before the strains exposure to FLC, there were only minor differences in FLC MICs among FM7[YPB-ADH], FM7[YPB-ADH/FCR1] and CAI4[YPB-ADH]; 25 d after FLC exposure FM7[YPB-ADH] was markedly more resistant to FLC than CAI4[YPB-ADH] for which there was a more than 8 fold increase in the MICs, while CAI4[YPB-ADH] was more resistant to FLC than FM7[YPB-ADH/FCR1] for which there was an 8 fold increase in the MICs (Table 2).

The agar diffusion test confirmed the above results. From the results of the agar diffusion test to FLC after 25 d of FLC exposure (Fig. 3), we observed that FM7[YPB-ADH/FCR1] was more sensitive to FLC than CAI4[YPB-ADH] and CAI4[YPB-ADH] was more sensitive than FM7[YPB-ADH], which was evident from the sizes of the zones of inhibition: FM7[YPB-ADH/FCR1] yielded significantly clearer and larger inhibitory zones than CAI4[YPB-ADH] for 2, 4, 8, 16, 64 µg FLC, and CAI4[YPB-ADH] yielded significantly clearer and larger inhibitory zones than FM7[YPB-ADH].

The above result was also confirmed by a time growth curve study. After 25 d of FLC exposure, we observed the influence of 20 µg/ml FLC on the strains. The results indicated 20 µg/ml FLC had weak activity against FM7[YPB-ADH], but it had powerful activity against FM7[YPB-ADH/FCR1].

Table 2. MICs of FLC for Different Strains Grown in YPD Containing 20 µg/ml FLC

<table>
<thead>
<tr>
<th>Strain</th>
<th>0d</th>
<th>5d</th>
<th>10d</th>
<th>15d</th>
<th>20d</th>
<th>25d</th>
<th>30d</th>
<th>35d</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAI4[YPB-ADH]</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>FM7[YPB-ADH]</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>32</td>
<td>>64</td>
<td>>64</td>
<td>>64</td>
<td>>64</td>
</tr>
<tr>
<td>FM7[YPB-ADH/FCR1]</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

a) See Table 1 for description of strains. b) Each MIC of FLC was tested in triplicate.
Table 3. Fungal Burden in Kidney Tissues of Mice Infected with FM7[YPB-ADH], FM7[YPB-ADH/FCR1] and Treated with FLC

<table>
<thead>
<tr>
<th>Strain</th>
<th>FLC dosage (mg/kg)</th>
<th>Median counts ± S.D. (CFU/g [10^6])</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM7[YPB-ADH]</td>
<td>0</td>
<td>121 ± 35*</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>29 ± 3.2</td>
</tr>
<tr>
<td>FM7[YPB-ADH/FCR1]</td>
<td>0</td>
<td>198 ± 51</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>176 ± 49</td>
</tr>
</tbody>
</table>

Data are the mean ± S.D. of 10 mice. *p < 0.05 when compared to the group infected with FM7[YPB-ADH/FCR1] by FLC treatment and the group infected with FM7[YPB-ADH].

and showed more marked activity than against CAI4[YPB-ADH] (Fig. 4).

Antifungal Susceptibility of FCR1 Overexpression and fcr1 Mutant Strain after FLC Exposure in Vivo To assess the antifungal susceptibility of FM7[YPB-ADH] and FM7[YPB-ADH/FCR1] after 25 d of FLC exposure, we performed initial experiments by challenging the mice (n=10) with 1.0×10^6 CFU per mouse and treated with FLC at a dose of 5 mg/kg by intravenous injection. Table 3 presents the fungal burdens of FLC treated mice. FLC at the dose of 5 mg/kg was effective in reducing the number of CFU per gram of kidneys in mice infected with FM7[YPB-ADH/FCR1] (p < 0.05), and the same dosing regimen was ineffective in mice infected with the FM7[YPB-ADH].

Overexpression of FCR1 Abolished CDR1 Expression Induced by FLC in the Development of FLC Resistance in C. albicans Overexpression of **CDR1**, an efflux pump, is one of the major mechanisms contributing to drug resistance in **C. albicans**. As a member of a family of zinc cluster proteins, **C. albicans** Fcr1p, homologous to **S. cerevisiae** Pdr1p and Pdr3p, mediated azole resistance by regulating the expression of **PDR5** homologous to the **C. albicans** CDR1, which was identified by complementation of the **S. cerevisiae pdr1 pdr3** mutants suggesting that Fcr1p might control the expression of **CDR1**. So we analyzed **CDR1** expression in FM7[YPB-ADH], FM7[YPB-ADH/FCR1] and CAI4[YPB-ADH] after 25 d of FLC exposure by real-time RT-PCR. As expected in this study, **CDR1** expression was also induced by FLC exposure in all strains (Fig. 5A). Overexpression of **FCR1** abolished the induction of **CDR1** expression in the presence of FLC and in contrast fcr1 mutant (FM7[YPB-ADH/FCR1]) significantly increased the induction of **CDR1** expression (Fig. 5A). However, **CDR1** expression was not completely abolished by overexpression of **FCR1**. In the presence of drugs, the level of **CDR1** mRNA in the **FCR1** overexpression strain was reduced to 45% of that in the wild-type strain (Fig. 5B).

Overexpression of FCR1 Decreased Efflux of Rhodamine 6G by C. albicans in the Development of FLC Resistance To test whether the different susceptibility to FLC among FM7[YPB-ADH], FM7[YPB-ADH/FCR1], CAI4[YPB-ADH] after 25 d of FLC exposure resulted from the difference in **CDR1** expression, we analyzed the efflux of rhodamine 6G by **C. albicans**. The energy-dependent efflux of rhodamine 6 G was demonstrated: efflux of rhodamine 6G from the strains required the presence of glucose to provide energy, by 60 min following glucose addition the extracellular rhodamine 6G concentration had increased significantly; deletion of **FCR1** in **C. albicans** (FM7[YPB-ADH]) significantly increased the efflux of rhodamine 6 G compared to its parent strain (CAI4[YPB-ADH]) in the presence of FLC, while overexpression of **FCR1** significantly decreased the efflux of rhodamine 6 G compared to its parent strain (CAI4[YPB-ADH]) (Fig. 6).

DISCUSSION

Widespread and long-term use of azole derivatives to treat **C. albicans** infection has promoted the development of multidrug resistance. Two major mechanisms of azole resistance have been identified: One common resistance mechanism is the reduced intracellular accumulation of drugs, which is correlated with the increased expression of the **CDR** genes, members of the ABC efflux pump family, and/or of the **PDR5** homologous to the **C. albicans** CDR1, which was identified by complementation of the **S. cerevisiae pdr1 pdr3** mutants suggesting that Fcr1p might control the expression of **CDR1**. So we analyzed **CDR1** expression in FM7[YPB-ADH], FM7[YPB-ADH/FCR1] and CAI4[YPB-ADH] after 25 d of FLC exposure by real-time RT-PCR. As expected in this study, **CDR1** expression was also induced by FLC exposure in all strains (Fig. 5A). Overexpression of **FCR1** abolished the induction of **CDR1** expression in the presence of FLC and in contrast fcr1 mutant (FM7[YPB-ADH/FCR1]) significantly increased the induction of **CDR1** expression (Fig. 5A). However, **CDR1** expression was not completely abolished by overexpression of **FCR1**. In the presence of drugs, the level of **CDR1** mRNA in the **FCR1** overexpression strain was reduced to 45% of that in the wild-type strain (Fig. 5B).
MDR1 gene, a member of the MFS efflux pump family.13,31,32 Other common mechanisms are increased expression of the \textit{ERG11} gene that encodes the target enzyme ofazole drugs, sterol 14\textalpha-demethylase, and alteration of the enzyme due to point mutations in the gene.32–38

\textit{C. albicans} \textit{FCR1} gene has been reported characterization by encoding a putative 517-amino-acid protein with an N-terminal Zn\textsubscript{6}C\textsubscript{3}-type zinc finger motif homologous to that found in fungal zinc cluster regulatory factors including \textit{S. cerevisiae} \textit{Pdr1p} and \textit{Pdr3p}. A previous study found that deletion of \textit{FCR1} gene results in hyperresistance of \textit{C. albicans} to FLC and other antifungal drugs and introduction of a plasmid borne copy of the \textit{FCR1} gene in the \textit{fcr1} mutant and their parent strain to FLC after FLC exposure in this study. The variance of susceptibilities of \textit{C. albicans} \textit{fcr1} mutant, \textit{FCR1} overexpression and their parent strain which have reduction susceptibilities to FLC by FLC exposure, but compared to parent strain there was markedly lower induction of \textit{CDR1} expression in the \textit{FCR1} overexpression strain and markedly higher in the \textit{fcr1} mutant strain (Fig. 5). Our results suggested that \textit{Fcr1p} could partially abolish \textit{CDR1} induction by FLC in the development of \textit{C. albicans} azole resistance.

\textit{Cdr1p} could mediate azole resistance by causing active energy-dependent extrusion of the drug out of cells.31,39 In the present study, we used a fluorescent dye, rhodamine 6 G (R6G), which is a substrate of \textit{CDR1}, to identify \textit{CDR} activity because a previous study showed that the efflux of rhodamine 6 G is positively correlated with the expression of \textit{CDR1}.40 Our results for rhodamine 6 G active efflux also showed that with the susceptibilities of the strains to FLC decreased, and the extrusion of rhodamine 6 G by \textit{C. albicans} increased in the presence of glucose providing energy for rhodamine 6 efflux (Fig. 6), which suggested \textit{CDR1} overexpression contributed to the development of the reduction susceptibilities to FLC by FLC exposure in this study. The variance of susceptibilities of \textit{C. albicans} \textit{FCR1} overexpression, \textit{fcr1} mutant and their parent strain to FLC after FLC exposure resulted, at least partially, from the variant expression of \textit{CDR1}. Taken together, we conclude that \textit{Fcr1p} may inhibit the development of FLC resistance in \textit{C. albicans} via abolishing \textit{CDR1} induction.

The development of drug resistance and the limited variety of antifungal drugs available for clinical therapy are issues in the treatment of infectious diseases. The present study showed that \textit{Fcr1p} is involved in the development of \textit{C. albicans} azole resistance by regulating a drug resistance pathway, though the molecular mechanisms need further study. Hence, our findings may open a new doorway for the development and design of new effective agents for the treatment of microbial infections.

Acknowledgments This work was supported by the National Natural Science Foundation of China (No 303004422).

We thank William A. Fonzi for kindly providing the \textit{C. albicans} strain CA14 and Martine Raymond for kindly providing the \textit{C. albicans} strain FM7 and plasmid YPB-ADHpt.

REFERENCES
