Oleanolic Acid, a Pentacyclic Triterpene Attenuates the Mustard Oil-Induced Colonic Nociception in Mice

Juliana Lemos Maia,a Roberto César Pereira Lima-Júnior,a Ju cenzi Pereira David,b Jorge Mauricio David,c Flávia Almeida Santos,a and Vietla Satyanarayana Rao*a

a Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara; 60430–270 Fortaleza, CE, Brazil; b Pharmacy Faculty, Federal University of Bahia; and c Institute of Chemistry, Federal University of Bahia; 1401–70–250, Salvador, Brazil. Received July 25, 2005; accepted October 25, 2005

Many natural terpenoid compounds from plants exhibit antinociceptive property but very few studies have addressed their efficacy in visceral models of nociception. The present study evaluated the antinociceptive potential of oleanolic acid, a pentacyclic triterpene in the mouse model of colonic nociception induced by mustard oil. We further examined the possible participation of opioid, α2-adrenergic, and transient receptor potential vanilloid 1 (TRPV1)-receptors in its mechanism. Mice were pretreated orally with oleanolic acid (3, 10, 30 mg/kg) or vehicle, and the pain-related behavioral responses to intracolonic injection of mustard oil was analysed. Oleanolic acid significantly suppressed the mustard oil-induced nociceptive behaviors at test doses of 10 and 30 mg/kg, in a dose-related manner. The antinociceptive effect of oleanolic acid (30 mg/kg) was significantly blocked by pretreatment with the opioid antagonist, naltrexone (2 mg/kg, i.p.), while the α2-adrenoceptor antagonist, yohimbine (2 mg/kg, s.c.), had no effect. Pretreatment with ruthenium red (3 mg/kg, s.c.), a non-competitive TRPV1 antagonist alone caused significant inhibition of mustard oil-induced nociception but its co-administration with oleanolic acid produced neither antagonism nor potentiation of oleanolic acid antinociception. In the open-field test that detects sedative or motor abnormality, mice received 30 mg/kg oleanolic acid did not show any per se influence, but significantly inhibited the mustard oil-induced decrease in ambulation frequency. These data demonstrate the visceral antinociceptive potential of oleanolic acid that involves an opioid mechanism and possibly a modulatory influence on vanilloid-receptors, which needs further study.

Key words oleanolic acid; pentacyclic triterpene; visceral nociception; mustard oil; antinociceptive activity

Visceral pain is the most common form of pain for which the patients often seek medical care. Ascending pathways in the spinal cord that relay nociceptive information from the periphery to supraspinal central nervous system sites has been studied as potential targets for disrupting pain processing and providing relief. Despite the considerable advances in knowledge regarding the basic mechanisms underlying visceral pain and visceral hyperalgesia, no new effective therapies for abdominal pain have been discovered. Tissue injury, inflammation, and algesic chemicals produce changes in the stimulus response, leading to either sensitisation or desensitization of peripheral sensory afferents. An enormous range of pharmacological agents and endogenous substances via numerous receptors influence the visceral afferents. These substances produce their effects on visceral afferents by sensitization, opening of ion channels or by altering the expression of mediators, channels, or receptors.1 In recent years, a central importance is given to capsaicin (vanilloid) receptor 1 (VR1, also called transient receptor potential V1, TRPV1) in the regulation of the activity of sensory afferent nerves. TRPV1 gene knock out mice are analgesic to a wide range of painful inflammatory states, suggesting that TRPV1 receptor antagonists may be effective in those pain states associated with tissue injury, and chemical exposure.2,3 Currently, inflammatory hyperalgesia is managed by NSAIDs (cyclo-oxygenase inhibitors) and opioids, although very effective against inflammatory hyperalgesia, both of these therapeutic classes possess significant limitations.4,5 Opioids induce constipation, and nausea, whereas NSAIDs possess significant side effects on the gastrointestinal, cardiovascular and renal systems.

In the recent past, many novel structures derived from a number of natural sources have been examined for the development of drugs acting as agonists or antagonists at vanilloid receptors, which include compounds like polygodial, a full vanilloid agonist derived from marsh pepper; warburganal from the bark of warburgia trees; isovelleral with terpenoid structure isolated from fungi; scalaradial, an unsaturated di-aldehyde isolated from sponges; and scutigeral, isolated from edible mushrooms.6 The natural triterpenic mixture α- and β-amyrin, isolated from Protium heptaphyllum has recently been shown to exert gastroprotective effect against ethanol-induced lesions and an antinociceptive effect in the visceral model of nociception induced by capsaicin, possibly involving the capsaicin-sensitive sensory afferents.7,8 Chemically, the α- and β-amyrin is a mixture of two triterpenes belonging to the ursane (α-amyrin) and oleanane (β-amyrin) series. Oleanolic acid is a pentacyclic triterpene that pertains to oleanane (β-amyrin) series (Fig. 1) and previous studies established its gastro- and hepato-protective and anti-inflammatory effects.9,10 So far there have been no available reports that show the efficacy of oleanolic acid in animal models of nociception that would simulate visceral pain in humans.

Intracolonic instillation of capsaicin or mustard oil is a valid model of acute visceral pain in the mouse that evokes...
spontaneous pain-related behaviors (abdominal licking, stretching, and muscle contractions), simulating the sensations of visceral hyperalgesia (bloating, discomfort and abdominal pain) often experienced by patients with IBS or other functional disorders. The present study aimed to assess the antinociceptive potential of oleanolic acid and its possible mechanism, using the mouse model of acute colonic nociception induced by mustard oil.

MATERIALS AND METHODS

Plant Material The aerial parts (2.4 kg) of *Eriope blanchetii* (Benth.) Harley (Lamiaceae) was collected from the Metropolitan Park area of Abaeté (Salvador, BA) after its identification and the voucher specimen (#045599) was retained in Alexandre Leal Costa Herbarium, Institute of Biology, Federal University of Bahia. Oleanolic acid was extracted and isolated from the dried plant material as per procedures described earlier. In brief, the ground plant material was first macerated with MeOH and the crude methanolic extract was concentrated and partitioned between hexane : MeOH/H2O (9 : 1), CHCl3 : MeOH/H2O (6 : 4) and AcOEt : H2O (6 : 4). The chloroformic phase was then submitted to fractionation on silica gel column chromatography using the mixtures of CHCl3 : MeOH/H2O in increasing polarity and the fractions obtained were purified by repeated chromatography and methylation processes so as to obtain pure methyl ester of oleanolic acid (2.5 g). The oleanolic acid was identified based on spectral data obtained from NMR IV (1H and 13C), and Mass Spectrometry and in comparison with literature data. For experiments, oleanolic acid was suspended in aqueous Tween 80 solution (2%).

Chemicals The chemicals used in the study were the mustard oil, ruthenium red, morphine, naloxone, clonidine and yohimbine (Sigma-Aldrich, Brazil). All drugs were dissolved in saline.

Animals Experiments were performed on male Swiss albino mice (22—26 g) obtained from the Central Animal House of this University and the Institutional Animal Care and Use Committee approved the experimental protocols, which were in accordance with the ethical guidelines of International Association for the Study of Pain (IASP).

Mustard Oil-Induced Colonic Nociception To assess the antinociceptive effect of oleanolic acid against the mustard oil (MO)-induced colonic nociception, mice in groups (*n*=8) were orally treated with oleanolic acid (3, 10 or 30 mg/kg), vehicle (2% Tween 80 in distilled water) or morphine (5 mg/kg, s.c.), 1 h and 30 min, respectively, before the intracolonic administration of MO (Sigma-Aldrich, Brazil; 0.75% in saline 0.9%, 50 μl). The mice were observed for the total number of nociceptive behaviors-evoked by MO were significantly suppressed in a dose-related manner. The visceral pain-related behaviors-evoked by MO were significantly suppressed in groups of mice pretreated with morphine (5 mg/kg, s.c.), an α2-adrenoceptor agonist clonidine (0.1 mg/kg, i.p.) or the TRPV1 non-competitive antagonist ruthenium red (3 mg/kg, s.c.) (Figs. 2—4). The suppressive effects of triterpene mix-

Figure 2 depicts the antinociceptive effect of oleanolic acid in mustard oil test. Intracolonic application of MO (0.75%, 50 μl) provoked a significant increase in spontaneous pain-related behaviors when compared with saline treated normal controls. The dose selection of MO for this test was based on our preliminary experiments that showed good consistency in producing pain-related behaviors. In groups pretreated with oleanolic acid (10, 30 mg/kg, p.o.), mustard oil-induced nociceptive behaviors were significantly inhibited in a dose-related manner. The visceral pain-related behaviors-evoked by MO were significantly suppressed in groups of mice pretreated with morphine (5 mg/kg, s.c.), an α2-adrenoceptor agonist clonidine (0.1 mg/kg, i.p.) or the TRPV1 non-competitive antagonist ruthenium red (3 mg/kg, s.c.) (Figs. 2—4). The suppressive effects of triterpene mix-

![Fig. 2. The Antinociceptive Effect of Oleanolic Acid against Mustard Oil-Induced Visceral Nociception and the Possible Involvement of Opioid- Receptor, in Mice](image-url)
Fig. 3. Effect of α2-Adrenoceptor Antagonism on the Antinociceptive Effect of Oleanolic Acid in Mustard Oil Test

Behaviors related to pain after intracolonic instillation of mustard oil (0.75% in saline 0.9%, 50 μl/animal) were observed in groups of mice pre-treated with vehicle (2% Tween 80 in distilled water, p.o.), oleanolic acid (OA, 30 mg/kg, p.o.), yohimbine (Yoh, 2 mg/kg, s.c.)+OA or clonidine (Clo, 0.1 mg/kg, i.p.)+Yoh. Data represent the mean±S.E.M. (n=8). *p<0.01 vs. saline; **p<0.01 vs. vehicle; ***p<0.01 vs. Clo.

DISCUSSION

In animals several algogenic substances like capsaicin, mustard, and cyclopenthamide, applied to visceral structures can elicit pain-related behaviors involving capsaicin-sensitive primary afferents [Maggi et al., 1992]. These algogenic substances are capable of inducing pain as well as inflammatory reaction when either visceral afferents are sensitized or central neurons undergo a change in excitability (central sensitization) after persistent visceral input. In the search for novel natural substances, which possess visceral antinociceptive property, we used the acute model of visceral pain induced by intracolonic instillation of MO to produce spontaneous pain-related behaviors in mice (abdominal licking, stretching, and muscle contractions), which has disease-relevancy to human irritable bowel syndrome. The triterpenoid oleanolic acid could significantly suppress the pain-related behaviors against mustard oil-induced visceral pain, possibly regulating the functioning of primary afferent fibers. Visceral afferents express a wide range of membrane receptors (including vanilloid receptors, TRPV1) to chemical stimuli, which are involved in sensory signalling from the gut to the central nervous system. Figure 4 shows that both ruthenium red and oleanolic acid could inhibit the MO-induced nociception almost to the same extent. However, it does not imply that oleanolic acid is a non-competitive antagonist of TRPV1 like, ruthenium red. Moreover, when animals were pretreated with these agents (oleanolic acid and ruthenium red) in combination, there was no antagonism or additive antinociception in mustard oil test. Also, unlike capsaicin, oleanolic acid failed to induce per se nociception following subplantar injection into the mouse hind paw (data not shown). These observations suggest that the oleanolic acid does not act as a TRPV1 agonist but may possibly induce a modulatory influence on vanilloid-receptors, which needs further clarification. Past works have shown that MO can induce acute colitis and oleanolic acid has been reported to exert anti-inflammatory action. Therefore it is reasonable to assume that oleanolic acid suppresses the inflammatory pain. The α2-adrenoceptor agonist has been shown to induce antinociceptive effect in the experimental model of formalin-induced colitis in rats and reduce visceral hypersensitivity in clinical settings. Therefore, a possible involvement of α2-adrenoceptors in the antinociceptive effect of oleanolic acid in MO-model of colitis, using the agonist clonidine and the antagonist yohimbine. The results obtained indicate that both clonidine and oleanolic acid were able to suppress the pain-related behaviors. However, yohimbine could reverse the antinociception produced by clonidine but not of oleanolic acid, suggesting that α2-adrenoceptors play no role.

It has been suggested that κ-opioid receptors are more strongly linked with visceral pain. In the present study, morphine significantly suppressed the visceral pain more efficiently than oleanolic acid probably due to lack of κ-opioid agonistic activity. Nevertheless, the antinociception induced by both morphine and oleanolic acid was found to be naloxone-sensitive, indicating the involvement of opioid receptors. Oleanolic acid, at the dose that produced inhibition of MO-nociception did not impair locomotion of mice in open-field test. Interestingly, oleanolic acid could effectively reverse the
mustard oil-induced hypolocomotion in this test, suggesting that the oleanolic acid alleviates MO-induced visceral pain. In conclusion, the data obtained on oleanolic acid indicate that the triterpene oleanolic acid inhibits visceral nociception through an opioid mechanism. Further, it may have a modulatory influence on vanilloid receptors, which needs further elucidation on its antinociceptive activity.

Acknowledgment The authors are grateful to CNPq (Proc. No. 300108) for financial support.

REFERENCES